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Abstract

Rivers, floods and tsunamis are often very turbulent. Conven-
tional models of such environmental fluids are typically based
on depth averaged inviscid irrotational flow equations. We ex-
plore the implications of changing the theoretical base to the
turbulent Smagorinski large eddy closure. The aim is to more
appropriately model the fluid dynamics of such complex environ-
mental fluids by using such a turbulent closure. Large changes
in fluid depth are allowed. Computer algebra constructs the
slow manifold of the flow in terms of the fluid depth and the
mean turbulent lateral velocities. The major challenge is to deal
with the nonlinear stress tensor in the Smagorinski closure. The
model integrates the effects of inertia, self-advection, bed drag,
gravitational forcing and turbulent dissipation with minimal as-
sumptions. Although the resultant model is close to established
models, the real outcome is creating a sound basis for the mod-
elling so others, in their modelling of more complex situations,
can systematically include more complex physical processes.

Keywords turbulent flood, tsunami, Smagorinski closure,
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Introduction

Environmental turbulent fluids have large wave length compared
with the fluid depth. Bousmar [1], Liu et al. [5], Demuren [3] and
others experimentally and numerically explored compound chan-
nel flows as being typical of such environmental turbulent fluid.
Conventional mathematical models of such flows are carried
out by depth averaging the flow equations. Bousmar [1] pro-
posed an exchange discharge model (EDM) by depth averaging
the Navier–Stokes equations. The EDM solves the momentum
transfers experimentally and numerically through the turbulent
exchange and geometrical transfer between channel subsections,
the channel and the shallow regions. The EDM predicts the dis-
charge and water profile computation successfully and supports
our simulations of flows along straight channels. Liu et al. [5]
simulated shallow water flows in curved and meandering chan-
nels by a depth averaged lattice Boltzmann model by using the
large eddy simulation model to account for turbulence. Our
simulations of flows over meandering channels are compared
with those of Liu et al. [5].

However, Roberts [9] discussed evidence that the depth averag-
ing in such models is quantitatively unsound. Here we resolve
some of the turbulent dynamics using the Smagorinski model.
But instead of depth averaging flow equations, we obtain low
order models based upon centre manifold theory. The theory
assures that there exists an emergent low dimensional, slow
manifold for the evolution governed by the continuity equa-
tion (1), momentum equation (2) and nonlinear shear tensor in
the Smagorinski closure (7). The resulting model is then used to
simulate flows over straight and meandering compound channels
and to compare with published data [1, 5, e.g.].

Detailed equations of the turbulent model

Let’s consider three dimensional incompressible and irrotational
turbulent fluid flowing down a slightly sloping ground. De-

fine Cartesian coordinates with the lateral directions x1 = x and
x2 = y and the normal direction x3 = z. Let the turbulent fluid
have thickness h(x,y, t) over the ground located at z = b(x,y)
with a mean slope θ in the x = x1 direction, denote the turbu-
lent mean velocity field by q(x,y,z, t) = (u,v,w) = (u1,u2,u3),
and the turbulent mean pressure field by p(x,y,z, t). After non-
dimensionalising the variables with respect to a typical fluid
thickness H, the velocity scale

√
gH, and the fluid density, the

non-dimensional governing partial differential equations for the
incompressible, irrotational, three dimensional, turbulent mean
fluid fields are the continuity equation

∇ ·q =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 , (1)

and the momentum equation

∂q
∂t

+q ·∇q =−∇p+∇ · τ+g , (2)

where τ is the turbulent mean stress tensor, and g = (g1,0,g3) is
the forcing from gravity (|g|= 1 by the non-dimensionalisation).
In the Smagorinski model the effects of turbulence are modelled
by via an eddy viscosity ν, which is related to the mean shear
stress through the mean stress-strain equation of

τi j = 2νε̇i j , (3)

with the indexes i, j = 1,2,3 indicating in the x, y and z directions.
Define the turbulent mean strain-rate tensor [11, 4, e.g.]

ε̇i j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
, (4)

and then the non-dimensional turbulent mean stress tensor for
the turbulent fluid is

σi j =−pδi j +2νε̇i j . (5)

When the eddy viscosity ν is constant, equation (5) models a
Newtonian fluid. In the Smagorinski model [7, e.g.], the eddy
viscosity ν varies linearly with the magnitude ε̇ of the second
invariant of the strain-rate tensor,

ν = cth2
ε̇ where |ε̇|2 = ∑

i, j
ε̇

2
i j . (6)

Roberts et al. [11] recommended the proportionality constant
ct ≈ 0.02 for turbulent environmental flows through compari-
son with established channel flow experiments [6, e.g.]. Thus,
equations (3)–(6) give the turbulent mean stress tensor

τi j = 2ν(ε̇)ε̇i j = cth2
ε̇

(
∂ui

∂x j
+

∂u j

∂xi

)
. (7)

We formulate boundary conditions on the ground z = b(x,y) and
free surface z = η(x,y, t) = h(x,y, t)+b(x,y) in terms of the tur-
bulent mean velocity field q(x,y,z, t) and the fluid depth h(x,y, t).



On the ground, no fluid penetrating the ground requires q ·n = 0 :

w = ubx + vby on z = b , (8)

where the unit normal vector to the ground is

n = (−bx,−by,1)/
√

1+b2
x +b2

y . (9)

We posit a slip law on the ground to account for a negligibly thin
turbulent boundary layer:

qtan = cuh
∂qtan

∂n
on z = b , (10)

where qtan represents the velocity tangential to the ground.
Roberts et al. [11] found the constant cu ≈ 1.85 matched open
channel flow observations. In a wider range of applications, the
coefficient cu would change for different ground roughness. Unit
vectors tangential to the ground in the x and y directions are

tx =
1√

1+b2
x
(1,0,bx) and ty =

1√
1+b2

y

(0,1,by).

The boundary condition (10) on the ground z = b becomes

1√
1+b2

x
(u+wbx) =

cuh√
1+b2

x +b2
y

∂

∂n
(u+wbx) , (11)

1√
1+b2

y

(v+wby) =
cuh√

1+b2
x +b2

y

∂

∂n
(v+wby) . (12)

On the free surface (that is, on its turbulent mean position), the
kinematic condition is

∂η

∂t
+u

∂η

∂x
+ v

∂η

∂y
= w on z = η = h+b , (13)

Relative to atmospheric pressure, the pressure on the free surface
is zero. Thus the turbulent mean stress normal to the free surface
is also zero: on z = η,

−p+
τ33−2ηxτ13−2ηyτ23 +η2

xτ11 +2ηxηyτ12 +η2
yτ22

1+η2
x +η2

y
= 0 .

(14)
There must be no turbulent mean, tangential stress at the free
surface: namely the following for the case of parameter γ = 1 ,

(1−η
2
x)τ13 +ηx(τ33− τ11)−ηy(τ12 +ηxτ23)

=
(1− γ)

√
2ct

(1+ cu)(1+2cu)
u
√

u2 + v2 on z = η , (15)

(1−η
2
y)τ23 +ηy(τ33− τ22)−ηx(τ12 +ηyτ13)

=
(1− γ)

√
2ct

(1+ cu)(1+2cu)
v
√

u2 + v2 on z = η . (16)

Reduced model of the fluid dynamics

This section focusses on interpreting the application of centre
manifold theory and the resulting modelling of the turbulent
flow. Instead of depth averaging equations, we apply centre
manifold theory to deal with the turbulent dynamics across the
fluid layer. Roberts, Georgiev and Strunin [11, 4] detailed similar
approaches by introducing the parameter γ into the free surface
tangential stress conditions (15) and (16) where γ = 0 empowers
analytic analysis and approximation, whereas γ = 1 recovers the
physical case. As described in previous research [11, 4], when

parameter γ = 0 lateral shear modes of turbulent flow become
neutral modes of the dynamics, that is, they form a slow subspace
along with conservation of fluid. Centre manifold theory [8, e.g.]
then assures us that there exists a slow manifold, that we can
construct, of the nonlinear dynamics and under changes in the
parameters. Evaluating the resulting slow manifold model at the
real case of parameter γ = 1 then provides a model for the fluid
dynamics.

Roberts [10], in a freely available report, detailed the computer
algebra that constructed the slow manifold model in 2D flow.
Modifications for 3D flow empowers the computer algebra pro-
gram to derive the evolutions of the water depth h(x,y, t) and
the depth averaged lateral velocities ū(x,y, t) and v̄(x,y, t). In
the centre manifold framework we can choose any reasonable
measure of the fluid dynamics in order to parametrise the model:
we choose the depth averaged lateral velocities and fluid depth.
We let q̄(x,y, t) =

√
ū2 + v̄2 denote the depth averaged speed of

the fluid flow. Omitting the intricate details of the derivation, the
evolution of h(x,y, t), ū(x,y, t) and v̄(x,y, t) are described by the
fluid conservation equation and by effective lateral momentum
equations:

∂h
∂t
≈−∂hū

∂x
− ∂hv̄

∂y
, (17)

∂ū
∂t
≈−0.00283

ūq̄
h

+0.993
(

gx−gz
∂h
∂x
−gz

∂b
∂x

)
−1.017v̄

∂ū
∂y
−1.025ū

∂ū
∂x
−0.0084ū

∂v̄
∂y

+ q̄
∂h
∂y

(
0.018

∂v̄
∂x

+0.482
∂ū
∂y

)
+ q̄

∂h
∂x

(
0.024

∂v̄
∂y

+0.056
∂ū
∂x

)
+0.237hq̄

∂2ū
∂y2 +0.0266hq̄

∂2ū
∂x2 +0.0194hq̄

∂v̄2

∂x∂y
, (18)

∂v̄
∂t
≈−0.00283

v̄q̄
h
−0.993gz

(
∂h
∂y

+
∂b
∂y

)
−1.025v̄

∂v̄
∂y
−1.017ū

∂v̄
∂x
−0.0083v̄

∂ū
∂x

+ q̄
∂h
∂y

(
0.498

∂v̄
∂y

+0.017
∂ū
∂x

)
+ q̄

∂h
∂x

(
0.011

∂v̄
∂x

+0.49
∂ū
∂y

)
+0.249hq̄

∂2v̄
∂y2 +0.0061hq̄

∂2v̄
∂x2 +0.256hq̄

∂ū2

∂x∂y
. (19)

Equations (17)–(19) are a result of taking into account the rela-
tively slow variations in the lateral directions x and y via small
but non-zero lateral derivatives ∂x and ∂y. They are a form of
slowly varying approximations [9, e.g.]. The momentum equa-
tions (18) and (19) incorporate inertial terms q̄t , self-advection
terms q̄(∂q̄/∂x), bed drag terms q̄q̄/h, gravitational forcing
gx−gz∇(h+b), and other terms related to the turbulent mixing,
where q̄ = (ū, v̄). Although equations (17)–(19) are expressed
in terms of depth averaged lateral velocities, they are derived
not by depth averaging, but instead by systematically accounting
for interaction between vertical profiles of the velocity and the
stress and bed drag and lateral space variations. The form and
coefficients in equations (17)–(19) are supported by dynamical
systems theory: the detail in the equations reflects that a slow
manifold is in principle composed of exact solutions of the full
dynamics and hence accounts for all interactions up to a given
order of analysis no matter how small the numerical coefficient
in the interactions.

In practice one might only implement those terms of equa-
tions (17)–(19) which are important in a specific application.
Future planned research is to explore how important is each of
the multitude of terms in some flows of environmental interest.
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Figure 1: Plot of the mean downstream velocity ū in the cross-
section at the point x = 20 and the time t = 800 with parameters
2β = 8, B = 0.9 and θ = 0.01. The channel is nine times as deep
as in the surrounding shallows, but the peak downstream velocity
is only 50% faster than in the shallows.

Our first task here is then to establish the model’s predictions in
a range of turbulent flows.

Modelling flows along straight channels

This section focuses on the preliminary application of the
model (17)–(19) for turbulent flow driven by a small downs-
lope along straight open channels. The water covers the entire
domain in order to avoid, at this stage, complications of mov-
ing contact lines between wet and dry bed: the flow is in the
channel and over a surrounding flood plain. We compare this tur-
bulent channel flow with viscous open channel flow by Roberts
et al. [12] and the experiments and analysis of turbulent flow
over flood plains and channels in a flume with water of variable
depth by Bousmar et al. [1, 2], Sofialidis and Prinos [13].

Let x be the down-stream and y be the cross-stream coordinate.
We choose a quartic shape for the channel to make smooth
transitions to and from the shallows and the channel:

z = b(x,y) =−1+B−B
{

max
[
0,1− (y/β)2

]}2
, (20)

where β denotes the half-width of the channel, 1−B the depth of
water on the shallow ‘flood plain’ on either side of the channel,
and the mid-depth of the channel is one (non-dimensionally) as
we set the mean water level to be at z = 0. For the simulations
reported here we set 2β = 8, B = 0.9 so the shallows are of
depth 0.1, and a mean slope θ = 0.01 in the x direction. For
comparison, the channel of Bousmar [1] was about twice as deep
in the constant channel as in the flood plain.

Numerical simulations were simply implemented using cen-
tred difference approximations to the spatial derivatives in equa-
tions (17)–(19) on a regular but staggered grid in space. Time
integration was performed by Matlab’s ode15s.

In simulations, we typically started the fluid with zero veloc-
ity and a flat free surface (z = 0). Transients in the simula-
tions decayed on a non-dimensional time of typically t = 400.
Figure 1 shows that fast flow developed in the deeper channel
and slow flow on the shallow regions. In a viscous flow in a
small open channel [12], the flow was eight times as fast in
the channel as on the shallow regions. Equation (18) suggests
the equilibrium downstream velocity in the shallow regions is√

0.993sin(0.01)×0.1/0.00283= 0.59, which corresponds the
numerical result in Figure 1. The equilibrium downstream veloc-
ity for a fluid of depth one is

√
0.993sin(0.01)×1/0.00283 =

1.87, but in our channel is only 0.95 as in Figure 1: such simula-
tions show that when the shape of the bed becomes complex, the
equilibrium downstream velocity decreases through lateral mix-
ing and dissipation. For example, for the lesser slope θ = 0.001,
the equilibrium downstream velocity over a flat bed is 0.58, in
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Figure 2: Contours of the mean transverse velocity v̄ at time
t = 800 with parameters 2β = 8, B = 0.9 and θ = 0.01. The high
value curves (red) and low value curves (blue) indicate travelling
vortices on the shear near the interactions between the channel
and shallow regions.

mid-channel with width 2β = 14 is 0.37, in mid-channel with
width 2β = 8 is 0.30, and in a slightly meandering channel
with a width 2β = 8 is 0.31. Figure 2 displays the contour of
the mean transverse velocity v̄(x,y, t) at time t = 800, which
indicates that weak horizontal vortices grow on the shear in
the transition between the channel and shallow regions. These
weak mixing vortices travel downstream. Similar vortices were
observed by Roberts and Li [12] in numerical simulations of
viscous open channel flow and by Bousmar [2] in experiments of
turbulent flow along channels in a flume. When the differences
of the downstream velocity between the channel and the shal-
low regions increase, stronger travelling vortices are generated,
corresponding to the analysis of Sofialidis and Prinos [13].

Flows along meandering channels

This section describes simulations of turbulent flow over a
slightly sloped ground with a meandering open channel. The sim-
ulations are compared with the numerical results of Liu et al. [5]
and Demuren [3] who calculated the two and three dimensional
turbulence flows in meandering channels by a lattice Boltzmann
model and a finite volume numerical model, respectively.

Here we describe simple meandering open channels by the bed

z = b(x,y) =−1+B−B

{
max

[
0,1−

(
y−κ1 cos(κ2x)

β

)2
]}2

,

(21)

where the parameter κ2 determine the wavelength 2π/κ2 of
the meandering channel, the parameter κ1 is the half-width of
the extent of the meanders, and the parameters β and 1− B
are the half-width and mid-depth of the meandering channel as
before. Simulate the turbulent flow over such channel by the
equations (17)–(19) with periodic boundary conditions in both
x and y directions for both the flow and channel.

In our numerical simulations, we found transients decay over
times of typically t ≈ 400. Figure 3 exhibits the contours of
the depth averaged lateral velocities ū(x,y, t) and v̄(x,y, t). The
downstream velocity ū reaches maximum at the bends. The
transverse velocity v̄ attains maximum and minimum at the con-
nection of the bends, which is consistent with the results of
Liu eta al. [5] who modelled the water in meandering channels
with 60◦ and 90◦ consecutive bends and a width of 0.3 m. De-
muren [3] calculated the water depth and the depth averaged
longitudinal and transverse velocities of three dimensional flows
in meandering channels with a natural bed configuration by a
finite volume numerical method. Simulations at fifteen observed
stations of the meandering channel indicate that the location of



y

 

 

0 10 20 30 40
10

5

0

5

10

0.15

0.2

0.25

0.3

x

y

 

 

0 10 20 30 40
10

5

0

5

10

0.05

0

0.05

x

Figure 3: Contours of the mean downstream velocity ū (top)
and mean transverse velocity v̄ (bottom) at time t = 800 with
parameters 2β = 8, B = 0.9, θ = 0.01, κ1 = 1 and κ2 = 4π/Lx.
The black curves plot the meandering channel.

the maximum velocity shifts from the inner bank to the outer
bank as the water flows through the bends of the channel.

Plots of the water depth do not show any features of much inter-
est: plots are dominated by the variations in the bed. Figure 4
plots of the the downstream velocity ū(x,y, t) and the transverse
velocity v̄(x,y, t) at the channel bends x = 10 and x = 20. The
downstream velocity and transverse velocity are bigger in the
outer bank than in the inner bank, which correspond to the com-
putations by Demuren [3] and the analysis of secondary flow
across the channel by Sofialidis and Prinos [13].

Conclusion

The proposed approach to supporting turbulent flood models
by the dynamical systems theory of centre manifolds appears
to predict environmental turbulent fluids reliably. The flows
in straight and meandering compound channel, as examples,
were numerically simulated by the new approach. The results
correspond to the analysis and numerical simulations of the
published work [1, 5, e.g.]. The equations (17)–(19) account for
the interactions between the vertical profiles and lateral spatial
variations, and thus may in future work be used to better model
erosion and sediment transport of the turbulent fluid.
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